Ruby 2.4参考手册
矩阵 | Matrix
Matrix::LUPDecomposition
Parent:Object
对于m≥n的m×n矩阵A,LU分解是m×n单位下三角矩阵L,n×n上三角矩阵U和m×m置换矩阵P使得L * U = P * A。如果m <n,那么L为m乘m,U为m乘n。
即使矩阵是单数的,使用pivoting的LUP分解总是存在的,所以构造函数永远不会失败。LU分解的主要用途是求解联立线性方程组的平方系统。如果是单数,则会失败吗?返回true。
属性
pivotsR
返回旋转索引
公共类方法
new(a) Show source
# File lib/matrix/lup_decomposition.rb, line 153
def initialize a
  raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix)
  # Use a "left-looking", dot-product, Crout/Doolittle algorithm.
  @lu = a.to_a
  @row_count = a.row_count
  @column_count = a.column_count
  @pivots = Array.new(@row_count)
  @row_count.times do |i|
     @pivots[i] = i
  end
  @pivot_sign = 1
  lu_col_j = Array.new(@row_count)
  # Outer loop.
  @column_count.times do |j|
    # Make a copy of the j-th column to localize references.
    @row_count.times do |i|
      lu_col_j[i] = @lu[i][j]
    end
    # Apply previous transformations.
    @row_count.times do |i|
      lu_row_i = @lu[i]
      # Most of the time is spent in the following dot product.
      kmax = [i, j].min
      s = 0
      kmax.times do |k|
        s += lu_row_i[k]*lu_col_j[k]
      end
      lu_row_i[j] = lu_col_j[i] -= s
    end
    # Find pivot and exchange if necessary.
    p = j
    (j+1).upto(@row_count-1) do |i|
      if (lu_col_j[i].abs > lu_col_j[p].abs)
        p = i
      end
    end
    if (p != j)
      @column_count.times do |k|
        t = @lu[p][k]; @lu[p][k] = @lu[j][k]; @lu[j][k] = t
      end
      k = @pivots[p]; @pivots[p] = @pivots[j]; @pivots[j] = k
      @pivot_sign = -@pivot_sign
    end
    # Compute multipliers.
    if (j < @row_count && @lu[j][j] != 0)
      (j+1).upto(@row_count-1) do |i|
        @lu[i][j] = @lu[i][j].quo(@lu[j][j])
      end
    end
  end
end
公共实例方法
det() Show source
返回A的行列式,从分解中进行有效计算。
# File lib/matrix/lup_decomposition.rb, line 78
def det
  if (@row_count != @column_count)
    Matrix.Raise Matrix::ErrDimensionMismatch
  end
  d = @pivot_sign
  @column_count.times do |j|
    d *= @lu[j][j]
  end
  d
end
也被命名为:行列式
determinant()
别名为:det
l() Show source
# File lib/matrix/lup_decomposition.rb, line 21
def l
  Matrix.build(@row_count, [@column_count, @row_count].min) do |i, j|
    if (i > j)
      @lu[i][j]
    elsif (i == j)
      1
    else
      0
    end
  end
end
p() Show source
返回置换矩阵 P
# File lib/matrix/lup_decomposition.rb, line 47
def p
  rows = Array.new(@row_count){Array.new(@row_count, 0)}
  @pivots.each_with_index{|p, i| rows[i][p] = 1}
  Matrix.send :new, rows, @row_count
end
singular?() Show source
如果U和A是单数,则返回true。
# File lib/matrix/lup_decomposition.rb, line 66
def singular?
  @column_count.times do |j|
    if (@lu[j][j] == 0)
      return true
    end
  end
  false
end
solve(b) Show source
返回m使得A * m = b,或等价地使得L * U * m = P * b b可以是矩阵或向量
# File lib/matrix/lup_decomposition.rb, line 94
def solve b
  if (singular?)
    Matrix.Raise Matrix::ErrNotRegular, "Matrix is singular."
  end
  if b.is_a? Matrix
    if (b.row_count != @row_count)
      Matrix.Raise Matrix::ErrDimensionMismatch
    end
    # Copy right hand side with pivoting
    nx = b.column_count
    m = @pivots.map{|row| b.row(row).to_a}
    # Solve L*Y = P*b
    @column_count.times do |k|
      (k+1).upto(@column_count-1) do |i|
        nx.times do |j|
          m[i][j] -= m[k][j]*@lu[i][k]
        end
      end
    end
    # Solve U*m = Y
    (@column_count-1).downto(0) do |k|
      nx.times do |j|
        m[k][j] = m[k][j].quo(@lu[k][k])
      end
      k.times do |i|
        nx.times do |j|
          m[i][j] -= m[k][j]*@lu[i][k]
        end
      end
    end
    Matrix.send :new, m, nx
  else # same algorithm, specialized for simpler case of a vector
    b = convert_to_array(b)
    if (b.size != @row_count)
      Matrix.Raise Matrix::ErrDimensionMismatch
    end
    # Copy right hand side with pivoting
    m = b.values_at(*@pivots)
    # Solve L*Y = P*b
    @column_count.times do |k|
      (k+1).upto(@column_count-1) do |i|
        m[i] -= m[k]*@lu[i][k]
      end
    end
    # Solve U*m = Y
    (@column_count-1).downto(0) do |k|
      m[k] = m[k].quo(@lu[k][k])
      k.times do |i|
        m[i] -= m[k]*@lu[i][k]
      end
    end
    Vector.elements(m, false)
  end
end
to_a()
别名为:to_ary
to_ary() Show source
返回数组中的L,U,P.
# File lib/matrix/lup_decomposition.rb, line 55
def to_ary
  [l, u, p]
end
另外别名为:to_a
u() Show source
返回上三角因子 U
# File lib/matrix/lup_decomposition.rb, line 35
def u
  Matrix.build([@column_count, @row_count].min, @column_count) do |i, j|
    if (i <= j)
      @lu[i][j]
    else
      0
    end
  end
end
矩阵 | Matrix相关
                                Ruby 是一种面向对象、命令式、函数式、动态的通用编程语言,是世界上最优美而巧妙的语言。
| 主页 | https://www.ruby-lang.org/ | 
| 源码 | https://github.com/ruby/ruby | 
| 版本 | 2.4 | 
| 发布版本 | 2.4.1 | 
 加载中,请稍侯......